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The applicability of three different distributed models to the kinetics of elimination of taurocholate by
isolated perfused rat liver was examined by fitting each model to literature data. Each of the models
was able to predict the effect of changing hepatic blood flow on elimination, but only the model which
incorporates separate density functions describing the degree of sinusoidal heterogeneity of blood flow
and intrinsic clearance was able to predict the effect of changing unbound fraction on elimination.
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INTRODUCTION

Numerous advances have been made in recent years
toward our understanding of the kinetics of hepatic elimina-
tion. The first models developed were the undistributed si-
nusoidal, or parallel-tube, model and the venous equilib-
rium, or well-stirred, model (1). These models are operation-
ally accurate in certain circumstances but are not very
realistic physiologically (2). More recently, several distrib-
uted sinusoidal models have been advanced which represent
the hepatic sinusoids as a collection of segregated tubes with
different properties (3-5). These distributed models show
promise but their compatibility with experimental observa-
tions has not been investigated extensively.

Discrimination among models of hepatic elimination
can, in theory, be achieved in the isolated perfused rat liver
preparation by measuring the hepatic availability of test sub-
stance (i.e., ratio of hepatic venous/portal venous concen-
trations) at different perfusate flow rates (Q) or at different
unbound fractions (f,,) of the substance in the perfusate (1,6).
Using the latter experimental design, the hepatic elimination
of the bile salt, taurocholate, was best described by a dis-
tributed model in which the radial or transverse heterogene-
ity of both sinusoidal Q and sinusoidal intrinsic clearance
(CL,,) was very large (7). This model, proposed by Sawada
et al. (5), assumes that the transverse heterogeneity of sinu-
soidal Q is independent from that of sinusoidal CL,,,. The
distributed model of Forker and Luxon (4), in which trans-
verse heterogeneity of only sinusoidal Q is assumed, did not
fit the taurocholate data well. The distributed model of Bass
et al. (3), in which transverse heterogeneity of the ratio of
sinusoidal CL;,/Q is assumed, was not fitted to the tauro-
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cholate data by Smallwood et al. (7). Because earlier it had
been shown that this model was appropriate only for small
degrees of heterogeneity (8).

Using the alternate experimental design, Pries ef al. (9)
measured the hepatic availability of taurocholate at different
values of Q in the isolated perfused rat liver preparation.
Bass et al. (10,11) fitted their distributed model to these data
and, in contrast to the results of Smallwood et al. (7), ob-
tained a good fit with a low degree of transverse heteroge-
neity of CL, /Q. In this communication, these apparently
conflicting findings are reconciled.

MATERIALS AND METHODS

Distributed Model of Forker and Luxon (4) (Model 1).
In this model m sinusoids with identical CL,,, but with a
range of flows between zero and twice the mean flow, are
grouped in n equally spaced flow classes. The fraction ¢; of
sinusoids in the ith class is calculated from the normal den-
sity function as approximately the product of midpoint fre-

quency and class width,
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where ¢V’ is the coefficient of variation for the normal dis-

tribution. In the single-pass, isolated perfused rat liver prep-

aration, the steady-state availability (F) for a constant portal

venous drug concentration is given by
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Distributed Model of Sawada et al. (5) (Model 2). This
model incorporates transverse heterogeneity in both Q and
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CL,,, in the sinusoids by grouping sinusoids with capillary
transit time in the ith class and CL,,, in the jth class. F for
this model is given by

—(2j B l)fu CLint
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where ai is given by Eq. (1) and ¢; is the fraction of sinusoids
in the ith flow class having that fraction of CL,,, in the jth
class, according to
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where c¢v” is the coefficient of variation for the normal dis-
tribution describing the frequency distribution of CL,,.

Distributed Model of Bass et al. (3) (Model 3). In this
model, sinusoids with identical values of CL,,/Q are classi-
fied into n groups and F is given by

F=CXp qumt+05( )z(ule> _R:| (5)

where cv is the coefficient of variation of the distribution of
CL,,/Q among the n groups of sinusoids. The term R in Eq.
(5) is a remainder term for which upper and lower bounds
have been defined provided that cv is small enough for the
quantity v, to be positive, where v, is given by (8)

1 cv fu CLint
Vo = v 0 (6)
For Eq. (5) to be valid, the value of R must also be small
compared with the preceding term [0.5(cv)*(f, CL;,/Q)*] in
Eq. (5) (8).
The report of Pries et al. (9) contained a single value of
F for taurocholate for each of 31 isolated perfused rat liver
preparations, in which Q ranged from 0.66 to 3.57 ml/min/g
liver and the perfusate albumin concentration was 30 g/liter.
This albumin concentration corresponds to a taurocholate f,,
of approximately 0.13 (7). In fitting model 3 to these data,
Bass et al. (10,11) excluded the 12 experiments in which Q
was less than 1.1 ml/min/g liver. This was because of con-
cern that possible closure of sinusoids at low flow could
compromise the physiological stability of the preparation. In
the present study, the three distributed models {Egs. (2), 3),
and (5)] were each fitted to these 24 pairs of F versus Q data
from Pries et al. (9). Fitting was by nonlinear least-squares
regression using the Funfit program (12). The fitted param-
eter values were then used in Eqs. (2), (3), and (5) to produce
a simulation for each model describing the effect of changing
f, on F at constant Q (32 ml/min) for a 7.2-g liver. These
simulations were then compared with the mean data of
Smallwood et al. (7).

RESULTS AND DISCUSSION

The fits of the three distributed models to the data of
Pries et al. (9) are shown in Fig. 1 and the minimum residual
sums of squares and parameter values are shown in Table L.

875

0.2

Availability
o

0.05 N
® * ¢model 3
B \
) AN
AN
B AN
model 1\
AN
0.02 1 [] ] A A4 1 [l

0.3 0.4 0.5 0.6 0.7 0.8 0.9

1/Q (ml/min/g liver)

Fig. 1. Effect of perfusate flow rate (Q) on availability of taurocho-
late in the isolated perfused rat liver preparation from Pries et al. (9)
(@). Also shown are the fits for the distributed models of Forker and
Luxon (4) [Eq. (2), model 1], Sawada et al. (5) [Eq. (3), model 2],
and Bass er al. (3) [Eq. (5), model 3].

A weighting factor of unity was used in fitting models 1 and
3, whereas a weighting factor of 1/F gave the best fit for
model 2. In Fig. 1, logF was plotted against 1/Q because the
lower the degree of heterogeneity, the closer this relation-
ship will be to a straight line. The fitted value of ¢v for model
3 0f 0.39 is comparable to that obtained by Bass et al. (10,11)
(0.35) with these same data. All three models fitted the data
well (Fig. 1), but using the criterion of sums of squares,
model 3 gave a slightly better fit.

An important property of a mathematical model is its
ability to make accurate predictions. The predictive ability
of the three distributed models was examined by using the
parameter values in Table I as input for simulations of the
relationship between taurocholate F and f,. These simula-
tions are shown in Fig. 2 together with mean data from seven
single-pass experiments with taurocholate in the isolated
perfused rat liver from Smallwood et al. (7).

In Fig. 2, the predictions of model 2 were in reasonable

Table 1. Fits of Distributed Models to Taurocholate Data of Pries

et al. (9)
CLint
(ml/min/
Model MRSS? g liver) cv' cv’ cv
1 0.0227 46.6 11.1 — —
0.0236 85.3 104 1.32 —
3 0.0205 41.8 —_ — 0.39

4 Minimum residual sum of squares.
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Fig. 2. Effect of unbound fraction (f,) on availability of taurocholate
in the isolated perfused rat liver preparation, showing mean data (@)
and 95% confidence limit, from Smallwood et al. (7). Also shown are
the curves predicted by model 1 [Eq. (2)], model 2 [Eq. (3)], and
model 3 [Eq. (5)], using the parameters in Table 1.

agreement with the experimental data. In contrast, neither
model 1 nor model 3 predicted the curvilinear decrease of
logF with increasing f,, (Fig. 2). Model 1 predicted an almost
linear decline, similar to that expected from the undistrib-
uted sinusoidal model, and model 3 predicted an increase in
F at high f,,.

The anomolous behavior of model 3 in Fig. 2 is due to
the violation of the requirement that, for this model to be
valid, the quantity v, in Eq. (6) must be positive. According
to Eq. (6), v, is positive only for f, < 0.7. Therefore, model
3 is incompatible with the experimental data shown in Fig. 2.
The calculation of f, for the study by Pries et al. (9) and
differences in experimental conditions (e.g., flow rates) be-
tween the two studies may add some uncertainty to the
present analysis. However, the anomolous behavior of
model 3 has been identified previously (18), where it was
shown that in addition to this behavior becoming more
marked as cv increases (8), it also becomes more marked as
CL,, increases (18).

An underlying assumption of the three models is that
hepatic elimination is proportional to f, [Egs. (2), (3), and
(5)]. However, there is evidence of a greater apparent uptake
rate of unbound ligand in the presence of tight binding of
ligand to albumin than in the absence of albumin. This has
led to the hypothesis that albumin may facilitate the hepatic
uptake of unbound ligands (13-16), which would invalidate
the assumption of models 1-3 that elimination is proportional
to f,. It should be noted that the hypothesis of albumin-
facilitated uptake was originally put forward, not on the ba-
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sis of direct experimental observation, but because of the
incompatibility of model 1 with F versus f,, data, as in Fig. 2
(13) and the finding of a nonlinear relationship between he-
patic uptake rate and unbound ligand concentration entering
the liver (14). However, the need to invoke a mechanism
involving the facilitation of uptake by albumin was dimin-
ished when it was found that model 2 fitted F versus f, data
very well (7) and that a nonlinear relationship between up-
take rate and influent unbound ligand concentration is also
consistent with uptake in which albumin plays no special
role (17). The question of albumin-facilitated uptake is there-
fore controversial.

In conclusion, models 1-3 were all compatible with the
experimental data in which Q was changed (Fig. 1), i.e., this
experimental design was not able to discriminate among the
models. In contrast, changing f, provided much better dis-
crimination among the models (Fig. 2) and showed that mod-
els 1 and 3 were inappropriate. Until more direct measure-
ments of events within the sinusoids become available,
model 2 appears to remain a viable model of hepatic elimi-
nation.
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